Statins and downstream inhibitors of the isoprenylation pathway increase type 2 iodothyronine deiodinase activity.
نویسندگان
چکیده
The type 2 iodothyronine selenodeiodinase (D2) is a critical determinant of local thyroid signaling, converting T(4) to the active form T(3) at the cytoplasmic face of the endoplasmic reticulum, thus supplying the nucleus with T(3) without immediately affecting circulating thyroid hormone levels. Although inhibitors of the cholesterol synthesis/isoprenylation pathway, such as hydroxy-methyl-glutaryl-coenzyme A reductase inhibitors (statins) have been to shown to down-regulate selenoproteins via interruption of normal selenocysteine incorporation, little is known about the effect of statins on D2. Here, we report that statins and prenyl transferase inhibitors actually increase D2 activity in cells with endogenous D2 expression. Although we confirmed that lovastatin (LVS) decreases the activity of transiently expressed D2 in HEK-293 cells, the prenyl transferase inhibitors increase activity in this system as well. LVS treatment increases endogenous Dio2 mRNA in MSTO-211H cells but does not alter transiently expressed Dio2 mRNA in HEK-293 cells. The prenyl transferase inhibitors do not increase Dio2 mRNA in either system, indicating that a posttranscriptional mechanism must exist. Cotreatment with LVS or the prenyl transferase inhibitors with the proteasome inhibitor MG-132 did not lead to additive increases in D2 activity, indirectly implicating the ubiquitin-proteasomal system in the mechanism. Finally, C57BL/6J mice treated with LVS or farnesyl transferase inhibitor-277 for 24 h exhibited increased D2 activity in their brown adipose tissue. These data indicate that statins and downstream inhibitors of the isoprenylation pathway may increase thyroid signaling via stimulation of D2 activity.
منابع مشابه
Pretranslational regulation of rhythmic type II iodothyronine deiodinase expression by beta-adrenergic mechanism in the rat pineal gland.
It has been demonstrated that type II iodothyronine deiodinase is present in rat pineal gland, and the deiodinase activity markedly increases during the hours of darkness, primarily through beta-adrenergic mechanism. We have studied the relationship between pineal type II iodothyronine deiodinase messenger RNA (mRNA) and the deiodinase activity to elucidate the mechanisms involved in the noctur...
متن کاملRat liver iodothyronine monodeiodinase. Evaluation of the iodothyronine ligand-binding site.
Ligand binding characteristics of rat liver microsomal type I iodothyronine deiodinase were evaluated by measuring dose-response inhibition and apparent Michaelis-Menten or inhibitor constants of iodothyronine analogues to compete as substrates or inhibitors for the natural substrate L-thyroxine. These data show strong correlations with the binding requirements of hormone analogues to serum thy...
متن کاملAla92 type 2 deiodinase allele increases risk for the development of hypertension.
Accumulating evidence suggests that genes of the hypothalamic-pituitary-thyroid pathway influence susceptibility to hypertension. Type 2 iodothyronine deiodinase is responsible for the conversion of thyroxine to tri-iodothyronine for use in peripheral tissues. The present study evaluated whether a type 2 iodothyronine deiodinase nonsynonymous polymorphism, threonine 92 to alanine (Thr92Ala), is...
متن کاملExpression of type 2 iodothyronine deiodinase in human osteoblast is stimulated by thyrotropin.
Thyroid hormones play important roles in bone growth, development, and turnover. To exert its biological activity, T(4) needs to be converted to T(3) by iodothyronine deiodinase. In human thyroid gland as well as rat brown adipose tissue, type 2 iodothyronine deiodinase (D2) expression is regulated by a TSH receptor-cAMP-mediated mechanism. TSH receptor knockout mice demonstrated the direct eff...
متن کاملType 2 iodothyronine deiodinase in rat pituitary tumor cells is inactivated in proteasomes.
The goal of these studies was to define the rate-limiting steps in the inactivation of type 2 iodothyronine deiodinase (D2). We examined the effects of ATP depletion, a lysosomal protease inhibitor, and an inhibitor of actin polymerization on D2 activity in the presence or absence of cycloheximide or 3,3', 5'-triiodothyronine (reverse T3, rT3) in rat pituitary tumor cells (GH4C1). We also analy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 153 8 شماره
صفحات -
تاریخ انتشار 2012